ГРУППЫ МЫШЦ У ЖИВОТНЫХ
Передвижение животного, перемещение частей его тела относительно друг друга, работа внутренних органов, акты дыхания, кровообращения, пищеварения, выделения осуществляются благодаря деятельности различных групп мышц.
У высших животных имеются три типа мышц: поперечнополосатые скелетные (произвольные), поперечнополосатые сердечные (непроизвольные), гладкие мышцы внутренних органов, сосудов и кожи (непроизвольные) .
Отдельно рассматриваются специализированные сократительные образования - миоэпителиальные клетки, мышцы зрачка и цилиарного тела глаза.
Помимо свойств возбудимости и проводимости, мышцы обладают сократимостью, т. е. способностью укорачиваться или изменять степень напряжения при возбуждении. Функция сокращения возможна благодаря наличиюв мышечной ткани специальных сократимых структур.
УЛЬТРАСТРУКТУРА И БИОХИМИЧЕСКИЙ СОСТАВ МЫШЦ
Скелетные мышцы. На поперечном сечении продольноволокнистой мышцы видно, что она состоит из первичных пучков, содержащих 20 - 60 волокон. Каждый пучок отделен соединительно-тканной оболочкой - перимизиумом, а каждое волокно - эндомизиумом.
В мышце животных насчитывается от нескольких сот до нескольких сот тысяч волокон с диаметром от 20 до 100 мкм и длиной до 12 - 16 см. Отдельное волокно покрыто истинной клеточной оболочкой - сарколеммой. Сразу под ней, примерно через каждые 5 мкм по длине, расположены ядра. Волокна имеют характерную поперечную исчерченность, которая обусловлена чередованием оптически более и менее плотных участков.
Волокно образовано множеством (1000 - 2000 и более) плотно упакованных миофибрилл (диаметр 0,5 - 2 мкм), тянущихся из конца в конец.
Между миофибриллами рядами расположены митохондрии, где происходят процессы окислительного фосфорилирования, необходимые для снабжения мышцы энергией. Под световым микроскопом миофибриллы представляют образования, состоящие из правильно чередующихся между собой темных и светлых дисков. Диски А называются анизотропными (обладают двойным лучепреломлением), диски И - изотропными (почти не обладают двойным лучепреломлением) . Длина А-дисков постоянна, длина И-дисков зависит от стадии сокращения мышечного волокна. В середине каждого изотропного диска находится Х-полоска, в середине анизотропного диска - менее выра- женная М-полоска.
За счет чередования изотронных и анизотропных сегментов каждая миофибрилла имеет поперечную исчерченность. Упорядоченное же расположение миофибрилл в волокне придает такую же исчерченность волокнув целом.
Электронная микроскопия показала, что каждая миофибрилла состоит из параллельно лежащих нитей, или протофибрилл (филаментов) разной толщины и разного химического состава. В одиночной миофибрилле насчи тывается 2000 - 2500 протофибрилл. Тонкие протофибриллы имеют поперечник 5 - 8 нм и длину 1 - 1,2 мкм, толстые - соответственно 10 - 15 нм и 1,5 мкм.
Толстые протофибриллы, содержащие молекулы белка миозина, образуют анизотропные диски. На уровне полоски М миозиновые нити связаны
тончайшими поперечными соединениями. Тонкие протофибриллы, состоящие в основном из белка актина, образуют изотропные диски.
Нити актина прикреплены к полоске Х, пересекая ее в обоих направле ниях; они занимают не только область И-диска, но и заходят в промежутки
между нитями миозина в области А-диска. В этих участках нити актина и миозина связаны между собой поперечными мостиками, отходящими от миозина. Эти мостики наряду с другими веществами содержат фермент АТФ-азу. Область А-дисков, не содержащая нитей актина, обозначается как зона Н. На поперечном разрезе миофибриллы в области краев А-дисков видно, что каждое миозиновое волокно окружено шестью актиновыми нитями.
Структурно-функциональной сократительной единицей миофибриллы является саркомер - повторяющийся участок фибриллы, ограниченный двумя полосками Х. Он состоит из половины изотропного, целого анизотропного и половины другого изотропного дисков. Величина саркомера в мышцах теплокровных составляет около 2 мкм. На электронном микрофото саркомеры проявляются отчетливо.
Гладкая эндоплазматическая сеть мышечных волокон, или саркоплазматический ретикулум, образует единую систему трубочек и цистерн .
Отдельные трубочки идут в продольном направлении, образуя в зонах Н миофибрилл анастомозы, а затем переходят в полости (цистерны), опоясывающие миофибриллы по кругу. Пара соседних цистерн почти соприкасается с поперечными трубочками (Т-каналами), идущими от сарколеммы поперек всего мышечного волокна. Комплекс из поперечного Т-канала и двух цистерн, симметрично расположенных по его бокам, называется триадой. У амфибий триады располагаются на уровне Х-полосок, у млекопитающих - на границе А-дисков. Элементы саркоплазматического ретикулума участвуют в распространении возбуждения внутрь мышечных волокон, а также в процессах-сокращения и расслабления мышц.
В 1 г поперечнополосатой мышечной ткани содержится около 100 мг сократительных белков, главным образом миозина и актина, образуюших актомиозиновый комплекс. Эти белки нерастворимы в воде, но могут быть экстрагированы растворами солей. К другим сократительным белкам относятся тропомиозин и комплекс тропонина (субъединицы Т, 1, С), содержащиеся в тонких нитях.
В мышце содержатся также миоглобин, гликолитические ферменты и другие растворимые белки, не выполняющие сократительной функции
3. Белковый состав скелетной мышцы
Молекулярная Содержание.
Белок масса, дальтон, тыс. белка, %
Миозин 460 55 - 60
Актин-р 46 20 - 25
Тропомиозин 70 4 - 6
Комплекс тропонина (ТпТ,Тп1, Тпс) 76 4 - 6
Актинин 180 1 - 2
Другие белки (миоглобин, ферменты и пр.) 5 - 10
Гладкие мышцы. Основными структурными элементами гладкой мышечной ткани являются миодиты - мышечные клетки веретенообразной и звездчатой формы длиной 60 - 200 мкм и диаметром 4 - 8 мкм. Наибольшая длина клеток (до 500 мкм) ыаблюдается в матке во время беременности. Ядро находится в середине клеток. Форма его эллипсоидная, при сокращении клетки оно скручивается штопорообразно, Вокруг ядра сконцентрированы митохондрии и другие трофические компоненты.
Миофибриллы в саркоплазме гладкомышечных клеток, по-видимому, отсутствуют. Имеются лишь продольно ориентированные, нерегулярно распределенные миозиновые и актиновые протофибриллы длиной 1 - 2 мкм. Поэтому поперечной исчерченности волокон не наблюдается. В протоплазме клеток находятся в большом количестве пузырьки, содержащие Са++, которые, вероятно, соответствуют саркоплазматическому ретикулуму поперечнополосатых мыщц.
В стенках большинства полых органов клетки гладких мышц соединены особыми межклеточными контактами (десмосомами) и образуют плотные пучки, сцементированные гликопротеиновым межклеточным веществом, коллагеновыми и эластичными волокнами. Такие образования, в которых клетки тесно соприкасаются, но цитоплазматическая и мембранная непрерывность между ними отсутствует (пространство между мембранами в области контактов составляет 20 - 30 нм), называют «функциональным синцитием».
Клетки, образующие синцитий, называют унитарными; возбуждение может беспрепятственно распространяться с одной такой клетки на другую, хотя нервные двигательные окончания вегетативной нервноЙ системы раслоложены лишь на отдельных из них. В мышечных слоях некоторых крупных сосудов, в мышцах, поднимающих волосы, в ресничной мышде глаза находятся мультиунитарные клетки, снабженные отдельными нервными волокнами и функционирующие независимо одна от другой.
МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ
В обычных условиях скелетные мышцы возбуждаются импульсами, которые поступают по волокнам двигательных нейронов (мотонейронов), находящихся в передних рогах спинного мозга или в ядрах черепномозговых нервов. В зависимости от количества концевых разветнлений нервное волокно образует синаптические контакты с болыыим или меньшим числом мышечных волокон.
Мотонейрон, его длинный отросток (аксон) и группа мышечных волокон, иннервируемых зтим аксоном, составляют двигательную, или нейромоторную, единицу. Чем более тонка, специализированна в работе мышца, тем меньшее количество мышечных волокон входит в нейромоторную единицу. Малые двигвтельные единицы включают лишь 3 - 5 волокон (например, в мышцах глазного яблока, мелких мышцах лицевой части головы), большие двигательные единицы - до волонно (аксон) нескольких тысяч волокон (в крупных мышцах туловища и конечностей). В большинстве мышц двигательные единицы соответствуют первичным мышечным пучкам, каждый из которых содержит от 20 до 60 мышечных волокон. Двигательные единицы различаются не только числом волокон, но и размером нейронов - большие двигательные единицы включают более крупный нейрон с относительно более толстым аксоном. Нейромоторная единица работает как единое делое: импульсы, исходящие от мотонейрона, приводят в действие мышечные волокна.
Сокращению мышечных волокон предшествует их злектрическое возбуждение, вызываемое разрядом мотонейронов в области концевых пластинок. Возникающий под влиянием медиатора потенциал концевой пластинки (ПКГ1), достигнув порогового уровня (сколо - 30 мВ), вызывает генерацию потенциала действия, распространяющегося в обе стороны вдоль мышечного волокиа.
Возбудимость мышечных волокон ниже возбудимости нервных волокон, иннервирующих мышцы, хотя критический уровень деполяризации мембран в обоих случаях одинаков. Это объясняется тем, что потенциал покоя мышечных волокон выше (около - 90 мВ) потенциала покоя нервных волокон ( - 70 мВ). Следовательно, для возникновения потенциала действия в мышечном волокне необходимо деполяризовать мембрану на большую величину, чем в нервном волокне.
Длительность потенциала действия в мышечном волокне составляет 5 мс (в нервном соответственно 0,5 - 2 мс), скорость проведения возбуждения до 5 м/с (в миелинизированных нервных волокнах - до 120 м/с).
Молекулярные механизмы сокращения. Сокращение - это изменение механического состояния миофибриллярного аппарата мышечных волокон под влиянием нервных ампульсов. Внешне сокращение проявляется в изменении длины мышцы или степени ее напряжения, или одновременно того и другого. Согласно лринятой «теории скольжения» в основе сокращения лежит взаимодействие между актиновыми и миозиновымй нитями миофибрилл вследствие образования поперечных мостиков между ними. В результат происходит «втягивание» тонких актиновых миофиламентов между миозиновыми.
Во время скольжения сами актиновые и миозиновые нити не укорачиваются; длина А-дисков также остается прежней, в то время как 3-диски
и Н-зоны становятся более узкими. Не меняется длина нитей и при растяжении мышцы, уменьшается ли~иь степень их взаимного перекрывания. Эти движения основаны на обратимом изменении конформации концевых частей молекул миозина (поперечных выступов с головками), при котором связь между толстым филаментом миозина и тонким филаментом актина, образуются, исчезают и возникают вновь.
До раздражения или в фазе расслабления мономер актина недоступен для взаимодействия, так как этому мешает комплекс тропонина и определенная конформация (подтягивание к оси филамента) концевых фрагментов молекулы миозина. В основе молекулярного механизма сокращения лежит процесс так называемого электромеханического сопряжения, причем ключевую роль в процессе взаимодействия миозиновых и актиновых миофиламентов играют ионы Са++, содержащиеся в саркоплазматическом ретикулуме. Это подтверждается тем, что в эксперименте при инъекции кальция внутрь волокон возникает их сокращение.
Возникший потенциал распространяется не только по поверхностной мембране мышечного волокна, но и по мембранам, выстилаюшим поперечные трубочки (Т-систему волокна). Волна деполяризации захватывает расположенные рядом мембраны цистерн саркоплазматического ретикулума, что сопровождается активацией кальциевых каналов в мембране и выходом ионов Са++ в межфибриллярное пространство.
Влияние ионов Са+ + на взаимодействие актина и миозина опосредствовано тропомиозином и тропониновым комплексом которые локализованы
в тонких нитях и составляют до 1/3 их массы. При связывании ионов Са++ с тропонином (сферические молекулы которого «сидят» на цепях актина) последний деформируется, толкая тропомиозин в желобки между двумя цепями актина. При этом становится возможным взаимодействие актина с головками миозина, и возникает сила сокращения. Одновременцо нроисходит гидролиз АТФ.
Поскольку однократный поворот «головок» укорачивает саркомер лишь на 1/100 его длины (а при изотоническом сокращении саркомер мышцы
может укорачиваться на 50 % длины за десятые доли секунды), ясно, что поперечные мостики должны совершать примерно 50 «гребковых» движений за тот же промежуток времени. Совокупное укорочение последовательно расположенных саркомеров миофибрилл приводит к заметному сокращению мышцы. При одиночном сокращении процесс укорочения вскоре закэнчивается.
Кальциевый насос, приводимый в действие энергией АТФ, снижает концентрацию Са++ в цитоплазме мышц до 10 М и повышает ее в сарколлазматическом ретикулуме до 10 М, где Са++ связывается белком кальсеквестрином. Снижение уровня Са++ в саркоплазме подавляет АТФ-азную активность актомиозина; при этом поперечные мостики миозина отсоединяются от актина. Происходит расслабление, удлинение мышцы, которое является пассивным процессом.
В случае, если стимулы поступают с высокой частотой {20 Гц и более), уровень Са++ в саркоплазме в период между стймулами остается высоким,
так как кальциевый насос не успевает «загнать» все ионы Са++ в систему саркоплазматического ретикулума. Это является причиной устойчивого
тетанического сокращения мышц. Таким образом, сокрашение и расслабление мышцы представляет собой серию процессов, развертывающихся в следующей последовательности: стимул -> возникновение потенциала действия - >электромеханическое сопряжение (проведение возбуждения по Т-трубкам, высвобождение Са++ и воздействие его на систему тропонин - тропомиозин - актин) - > образование поперечных мостиков и «скольжение» актиновых нитей вдоль миозиновых - > сокращение миофибрилл - > снижение концентрации ионов Са++ вследствие работы кальциевого насоса - > пространственное изменение белков сократительной системы - > расслабление миофибрилл.
После смерти мышды остаются напряженными, наступает так называемое трупное окоченение. При этом поперечные связи между филаментами актина и миозина сохраняются и не могут разорваться по причине снижения уровня АТФ и невозможности активного транспорта Са++ в саркоплазматический ретикулум.
СТРУКТУРА И ФУНКЦИИ НЕЙРОНА
Материалом для построения ЦНС и ее проводников является нервная ткань, состоящая из двух компонентов - нервных клеток (нейронов) и нейроглии. Основными функциональными элементами ЦНС являются нейроны: в теле животных их содержится примерно 50 млрд,
из которых лишь небольшая часть расположена на периферических участках тела.
Нейроны составляют 10 - 15 % общего числа клеточных элементов
в нервной системе. Основную же часть ее занимают клетки нейроглии.
У высших животных в процессе постнатального онтогенеза дифферен-
цированные нейроны не делятся. Нейроны существенно различаются по
форме (пирамидные, круглые, звездчатые, овальные), размерами (от 5 до
150 мкм), количеству отростков, однако они имеют и общие свойства.
Любая нервная клетка состоит из тела (сомы, перикариона) и отростков
разного типа - дендритов (от лат. дендрон - дерево) и аксона (от лат.
аксон - ось). В зависимости от числа отростков различают униполярные
(одноотростковые), биполярные (двухотростковые) и мультиполярные
(многоотростковые) нейроны. Для ЦНС позвоночных типичны биполярные
и особенно мультиполярные нейроны.
Дендритов может быть много, иногда они сильно ветвятся, различной
толщины и снабжены выступами - «шипиками», которые сильно увеличи-
вают их поверхность.
Аксон (нейрит) всегда один. Он начинается от сомы аксонным холмиком,
покрыт специальной глиальной оболочкой, образует ряд аксональных окои-
чаний - терминалий. Длина аксона может достигать более метра. Аксонный
холмик и часть аксона, не покрытая миелиновой оболочкой, составляют
начальный сегмент аксона; его диаметр невелик,(1 - 5 мкм).
В ганглиях спинно- и черепномозговых нервов распространены так
называемые псевдоуниполярные клетки; их дендрит и аксон отходят от
клетки в виде одного отростка, который затем Т-образно делится.
Отличительными особенностями нервных клеток являются крупное
ядро (до 1/3 площади цитоплазмы), многочисленные митохондрии, сильно
развитый сетчатый аппарат, наличие характерных органоидов - тигроидной
субстанции и нейрофибрилл. Тигроидная субстанция имеет вид базофильных
глыбок и представляет собой гранулярную цитоплазматическую сеть с мно-
жеством рибосом. Функция тигроида связана с синтезом клеточных белков.
При длительном раздражении клетки или перерезке аксонов это вещество
исчезает. Нейрофибриллы - это нитчатые, четко выраженные структуры,
находящиеся в теле, дендритах и аксоне нейрона. Образованы еще более
тонкими элементами - нейрофиламентами при их агрегации с нейротрубочками.
Выполняют, по-видимому, опорную функцию.
В цитоплазме аксона отсутствуют рибосомы, однако имеются митохондрии,
эндоплазматический ретикулум и хорошо развитый аппарат нейрофиламентов и
нейротрубочек. Установлено, что аксоны представляют собой очень сложные
транспортные системы, причем за отдельные виды транспорта (белков,
метаболитов, медиаторов) отвечают, по-видимому, разные субклеточные
структуры .
В некоторых отделах мозга имеются нейроны, которые вырабатывают гранулы
секрета мукопротеидной или гликопротеидной природы. Они обладают одновременно
физиологическими признаками нейронов и железистых клеток. Эти клетки
называются нейросекреторными.
Функция нейронов заключается в восприятии сигналов от рецепторов
или других нервных клеток, хранении и переработке информации и пере-
даче нервных импульсов к другим клеткам - нервным, мышечным или секреторным.
Соответственно имеет место специализация нейронов. Их подразделяют на
3 группы:
- чувствительные (сенсорные, афферентные) нейроны, воспринимающие сигналы
из внешней или внутренней среды;
- ассоциативные (промежуточные,вставочные) нейроны, связывающие разные нервные клетки друг с другом;
- двигательные (эффекторные) нейроны, передающие нисходящие влияния от вышерасположенных отделов ЦНС к нижерасположенным или из ЦНС к рабочим органам.
Тела сенсорных нейронов располагаются вне ЦНС:в спинномозговых
ганглиях и соответствующих им ганглиях головного мозга. Эти нейроны
имеют псевдоуниполярную форму с аксоном и аксоноподобным дендритом.
К афферентным нейронам относятся также клетки, аксоны
которых составляют восходящие пути спинного и головного мозга.
Ассоциативные нейроны - наиболее многочисленная группа нейронов.
Они имеют более мелкий размер, звездчатую форму и аксоны с многочис-
ленными разветвлениями; расположены в сером веществе мозга. Осуществ-
ляют связь между разными нейронами, например чувствительным и двига-
тельным в пределах одного сегмента мозга или между соседними сегментами;
их отростки не выходят за пределы ЦНС .
Двигательные нейроны также расположены в ЦНС. Их аксоны участ-
вуют в передаче нисходящих влияний от вышерасположенных участков
мозга к нижерасположенным или из ЦНС к рабочим органам (например,
мотонейронЫ в передних рогах спинного мозга) . Имеются эффектор-
ные нейроны и в вегетативной нервной системе. Особенностями этих ней-
ронов являются разветвленная сеть дендритов и один длинный аксон.
Воспринимающей частью нейрона служат в основном ветвящиеся
дендриты, снабженные рецепторной мембраной. В результате суммации
местных процессов возбуждения в наиболее легковозбудимой триегерной
зоне аксона возникают нервные импульсы (потенциалы действия), которые
распространяются по аксону к концевым нервным окончаниям. Таким обра-
зом, возбумсдение проходит по нейрону в одном направлении - от дендритов
к соме и аксону.
Нейроглия. Основную массу нервной ткани составляют глиальные
элементы, выполняющие вспомогательные функции и заполняющие почти
все пространство между нейронами. Анатомически среди них различают
клетки нейроглии в мозге (олигодендроциты и астроциты) и шванновские
клетки в периферической нервной системе. Олигодендроциты и шванновские
клетки формируют вокруг аксонов миэлиновые обалочки.
Между глиальными клетками и нейронами имеются щели шириной
15 - 20 нм, которые сообщаются друг с другом, образуя интерстициальное
пространство, заполненное жидкостью . Через это пространство
происходит обмен веществ между нейроном и глиальными клетками, а
также снабжение нейронов кислородом и питательными веществами путем
диффузии. Глиальные клетки, по-видимому, выполняют лишь опорные и
защитные функции в ЦНС, а не являются, как предполагалось, источни-
ком их питания или хранителями информации.
По свойствам мембраны глиальные клетки отличаются от нейронов:
они пассивно реагируют на электрический ток, их мембраны не генери-
руют распространяющегося импульса. Между клетками нейроглии су-
ществуют плотные контакты (участки низкого сопротивления), кото-
рые обеспечивают прямую электрическую связь. Мембранный потен-
циал глиальных клетов выше, чем у нейронов, и зависит главным образом
от концентрации ионов К+ в среде.
Когда при активной деятельности нейронов во внеклеточном простран-
стве увеличивается концентрация
К+, часть его поглощается деполяризованными глиальными элементами.
Эта буферная функция глии обеспечивает относительно постоянную внеклеточную концентрацию К+. Клетки глии - астроциты - расположены между телами нейронов и стенкой капилляров, их отростки контактируют со стенкой последних.
Эти периваскулярные отростки являются элементами гематоэнцефалического барьера.
Клетки микроглии выполняют фагоцитарную функцию, число их резко возрастает при повреждении ткани мозга.
|